Kamis, 31 Oktober 2013

soal statistik



1.       Mengapa pengukuran asosiasi penting dalam kehidupan manusia sampai saat ini?
Karena untuk sarana orang melakukan penelitian mengenai ada dan tidaknya hubungan antara dua hal, fenomena, kejadian atau lainnya. Usaha-usaha untuk mengukur hubungan ini dikenal sebagai mengukur asosiasi antara dua fenomena atau kejadian yang menimbulkan rasa ingin tahu para peneliti.
2.       Apa yang dimaksud  dengan asosiasi itu?
      asosiasi / hubungan (measures of association). Atau yang disebut Pengukuran asosiasi merupakan istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang digunakan untuk mengukur kekuatan hubungan antara dua variabel.
3.       Sebutkan contoh-contoh teknik analisis yang termasuk dalam pengukuran asosiasi!
teknik pengukuran asosiasi (measure of association) yang berguna untuk mengukur kekuatan hubungan dua variabel (atau lebih). Terdapat beberapa teknik analisis korelasi, diantaranya yang paling terkenal dan digunakan secara luas diseluruh dunia ialah teknik analisis korelasi Pearson dan Spearman.
4.       Apa kegunaan pokok teknik analisis korelasi?
Kegunaan pokok teknik Analisis Korelasi
Pengukuran asosiasi berguna untuk mengukur kekuatan (strength) hubungan antar dua variabel atau lebih. Contoh: mengukur hubungan antara variabel:
·        Motivasi kerja dengan produktivitas
·        Kualitas layanan dengan kepuasan pelanggan
·        Tingkat inflasi dengan IHSG
5.       Bagaimana kedudukan variabel dalam korelasi?
variabel dikatakan berasosiasi jika perilaku variabel yang satu mempengaruhi variabel yang lain. Jika tidak terjadi pengaruh, maka kedua variabel tersebut disebut independen.
6.       Apa maksud korelasi sama dengan 0?
Jika korelasi sama dengan nol (0), maka tidak terdapat hubungan antara kedua variabel tersebut.
7.       Apa maksud korelasi tidak sama dengan 0?
Jika koefesien korelasi diketemukan tidak sama dengan nol (0), maka terdapat ketergantungan antara dua variabel tersebut.
8.       Apa maksud korelasi sama dengan + 1?
Jika  koefesien korelasi diketemukan +1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) positif.
9.       Apa maksud korelasi sama dengan -1?
Jika  koefesien korelasi diketemukan -1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) negatif.
10.   Kapan kita dapat menggunakan teknik korelasi?
Apabila telah ada hubungan antara dua variabel (kadang lebih dari dua variabel) dengan skala tertentu, misalnya Pearson data harus berskala interval atau rasio; Spearman dan Kendal menggunakan skala ordinal; Chi Square menggunakan data nominal.

11.   Apa perbedaan antara  korelasi dan  kausalitas?
Ada perbedaan mendasar antara korelasi dan kausalitas. Jika kedua variabel dikatakan berkorelasi, maka kita tergoda untuk mengatakan bahwa variabel yang satu mempengaruhi variabel yang lain atau dengan kata lain terdapat hubungan kausalitas. Kenyataannya belum tentu. Hubungan kausalitas terjadi jika variabel X mempengaruhi Y. Jika kedua variabel diperlakukan secara simetris (nilai pengukuran tetap sama seandainya peranan variabel-variabel tersebut ditukar)  maka meski kedua variabel berkorelasi tidak dapat dikatakan mempunyai hubungan kausalitas. Dengan demikian, jika terdapat dua variabel yang berkorelasi, tidak harus terdapat hubungan kausalitas.
12.   Apa perbedaan antara korelasi dan linieritas?
Terdapat hubungan erat antara pengertian korelasi dan linieritas. Korelasi Pearson, misalnya, menunjukkan adanya kekuatan hubungan linier dalam dua variabel. Sekalipun demikian jika asumsi normalitas salah maka nilai korelasi tidak akan memadai untuk membuktikan adanya hubungan linieritas. Linieritas artinya asumsi adanya hubungan dalam bentuk garis lurus antara variabel. Linearitas antara dua variabel dapat dinilai melalui observasi scatterplots bivariat. Jika kedua variabel berdistribusi normal dan behubungan secara linier, maka  scatterplot berbentuk oval; jika tidak berdistribusi normal scatterplot tidak berbentuk oval.
13.   Apa saja asumsi dalam menggunakan korelasi dan terangkan maksudnya?
Asumsi dasar korelasi diantaranya seperti tertera di bawah ini:
·         Kedua variabel bersifat independen satu dengan lainnya, artinya masing-masing variabel berdiri sendiri dan tidak tergantung satu dengan lainnya. Tidak ada istilah variabel bebas dan variabel tergantung.
·         Data untuk kedua variabel berdistribusi normal. Data yang mempunyai distribusi normal artinya data yang distribusinya  simetris sempurna. Jika digunakan bahasa umum disebut berbentuk kurva bel.
14.   Sebutkan karakteristik korelasi!
Korelasi mempunyai karakteristik-karakteristik diantaranya:
a.       Kisaran Korelasi (0 - 1)
b.      Korelasi sama dengan Nol (0)
c.       Korelasi sama dengan satu (1)
d.      Korelasi sama dengan min satu (-1)
15.   Apa yang dimaksud dengan koefesien korelasi? Berikan contohnya!
Koefesien korelasi ialah pengukuran statistik kovarian atau asosiasi antara dua variabel. Besarnya koefesien korelasi berkisar antara +1 s/d -1. Koefesien korelasi menunjukkan kekuatan (strength) hubungan linear dan arah hubungan dua variabel acak. Jika koefesien korelasi positif, maka kedua variabel mempunyai hubungan searah. Artinya jika nilai variabel X tinggi, maka nilai variabel Y akan tinggi pula. Sebaliknya, jika koefesien korelasi negatif, maka kedua variabel mempunyai hubungan terbalik. Artinya jika nilai variabel X tinggi, maka nilai variabel Y akan menjadi rendah (dan sebaliknya). Untuk memudahkan melakukan interpretasi mengenai kekuatan hubungan antara dua variabel berikut contoh kreteria koefisien korelasi:
    • 0 : Tidak ada korelasi antara dua variabel
    • >0 – 0,25: Korelasi sangat lemah
    • >0,25 – 0,5: Korelasi cukup
    • >0,5 – 0,75: Korelasi  kuat
    • >0,75 – 0,99: Korelasi  sangat kuat
    • 1: Korelasi sempurna
16.   Apa makna signifikansi dalam korelasi? Terangkan dengan jelas!
Dalam bahasa Inggris umum, kata, "significant" mempunyai makna penting; sedang dalam pengertian statistik kata tersebut mempunyai makna “benar” tidak didasarkan secara kebetulan. Hasil riset dapat benar tapi tidak penting. Signifikansi / probabilitas / α memberikan gambaran mengenai bagaimana hasil riset itu mempunyai kesempatan untuk benar. Jika kita memilih signifikansi sebesar 0,01, maka artinya kita menentukan hasil riset nanti mempunyai kesempatan untuk benar sebesar 99% dan untuk salah sebesar 1%.
 Secara umum kita menggunakan angka signifikansi sebesar 0,01; 0,05 dan 0,1. Pertimbangan penggunaan angka tersebut didasarkan pada tingkat kepercayaan (confidence interval) yang diinginkan oleh peneliti. Angka signifikansi sebesar 0,01 mempunyai pengertian bahwa tingkat kepercayaan atau bahasa umumnya keinginan kita untuk memperoleh kebenaran dalam riset kita adalah sebesar 99%. Jika angka signifikansi sebesar 0,05, maka tingkat kepercayaan adalah sebesar 95%. Jika angka signifikansi sebesar 0,1, maka tingkat kepercayaan adalah sebesar 90%.
Pertimbangan lain ialah menyangkut jumlah data (sample) yang akan digunakan dalam riset. Semakin kecil angka signifikansi, maka ukuran sample akan semakin besar. Sebaliknya semakin besar angka signifikansi, maka ukuran sample akan semakin kecil. Unutuk memperoleh angka signifikansi yang baik, biasanya diperlukan ukuran sample yang besar. Sebaliknya jika ukuran sample semakin kecil, maka kemungkinan munculnya kesalahan semakin ada.

17.   Apa saja hasil interpretasi dalam analisis korelasi?
Hasil Interpensi dalam analisis korelasi
  • Jika angka koefesien korelasi menunjukkan 0, maka kedua variabel tidak mempunyai hubungan
  • Jika  angka koefesien korelasi mendekati 1, maka kedua variabel mempunyai hubungan semakin kuat
  • Jika  angka koefesien korelasi mendekati 0, maka kedua variabel mempunyai hubungan semakin lemah
  • Jika angka koefesien korelasi sama dengan 1, maka kedua variabel mempunyai hubungan linier sempurna positif.
  • Jika angka koefesien korelasi sama dengan -1, maka kedua variabel mempunyai hubungan linier sempurna negatif.
18.   Bagaimana melakukan pengujian hipotesis dalam korelasi?

            Pengujian hipotesis uintuk korelasi digunakan uji T. Rumusnya sebagai berikut:
                                      
Pengambilan keputusan menggunakan  angka pembanding t tabel dengan kriteria sebagai berikut:
·        Jika t hitung > t table H0 ditolak; H1 diterima
·        Jika t hitung < t table H0 diterima; H1 ditolak
19.   Apa itu koefesien determinasi?
Koefesien diterminasi dengan simbol r2 merupakan proporsi variabilitas dalam suatu data yang dihitung didasarkan pada model statistik. Definisi berikutnya menyebutkan bahwa r2 merupakan rasio variabilitas nilai-nilai yang dibuat model dengan variabilitas nilai data asli. Secara umum r2 digunakan sebagai informasi mengenai kecocokan  suatu model.  Dalam regresi r2 ini dijadikan sebagai pengukuran seberapa baik garis regresi mendekati nilai data asli yang dibuat model. Jika r2 sama dengan 1, maka angka tersebut menunjukkan garis regresi cocok dengan data secara sempurna.

20.   Perlukah kita menghitung koefesien determinasi dalam korelasi? Berikan penjelasannya.
hubungannya dengan korelasi, maka  r2  merupakan kuadrat dari koefesien korelasi yang berkaitan dengan variabel bebas (X) dan variabel Y (tergantung). Secara umum dikatakan bahwa r2  merupakan kuadrat korelasi antara variabel yang digunakan sebagai predictor (X) dan variabel yang memberikan response (Y). Dengan menggunakan bahasa sederhana r2  merupakan koefesien korelasi yang dikuadratkan. Oleh karena itu, penggunaan koefesien determinasi dalam korelasi tidak harus diinterpretasikan sebagai besarnya pengaruh variabel X terhadap Y mengingat bahwa korelasi tidak sama dengan kausalitas. Secara bebas dikatakan dua variabel mempunyai hubungan belum tentu variabel satu mempengaruhi variabel lainnya. Lebih lanjut dalam konteks korelasi antara dua variabel maka pengaruh variabel X terhadap Y tidak nampak. Kemungkinannya hanya korelasi merupakan penanda awal bahwa variabel X mungkin berpengaruh terhadap Y. Sedang bagaimana pengaruh itu terjadi dan ada atau tidak kita akan mengalami kesulitan untuk membuktikannya. Hanya menggunakan angka r2 kita tidak akan dapat membuktikan bahwa variabel X mempengaruhi Y.

21.   Berikan contoh kasus korelasi (hitungannya) beserta penyelesaiannya!
Seorang peneliti ingin mengetahui pengaruh dari tinggi badan terhadap berat badan. Untuk kebutuhan penelitian tersebut diambil sampel secara acak sebanyak 10 orang untuk diteliti. Hasil pengumpulan data diketahui data sebagai berikut :
http://4.bp.blogspot.com/_iUJ0P7Qk6ig/ShIeJpDVbMI/AAAAAAAAAm4/StQAD55qnco/s1600/CONTOH+SOAL.bmp
Berdasarkan data tersebut di atas :
1.      Hitunglah nilai a dan b untuk persamaan regersi linier sederhana
2.      Jika hipotesis penelitian menyatakan bahwa “tinggi badan seseorang berpengaruh terhadap berat badan seseorang”, ujilah hipotesis tersebut dengan menggunakan Uji T dan Uji F (tingkat keyakinan sebesar 95%)
3.      Hitunglah nilai r dan koefisien determinasi
4.      Bagaimana kesimpulannya.
Jawab :
Hipotesis penelitian : Tinggi Badan berpengaruh terhadap Berat Badan Seseorang (karena hanya dikatakan berpengaruh maka menggunakan uji dua arah).
Jika Y : Berat Badan Seseorang dan X : Tinggi Badan Seseorang, maka untuk mendapatkan nilai a dan b untuk persamaan regersi linier sederhana :
[Jawab+Contoh+Soal.bmp]
Berdasarkan hasil pengolahan data tersebut di atas maka dapat dibuat persamaan regresi linier sederhana : Y = - 73,72041 + 0,819657 X

Untuk menguji hipotesis secara parsial digunakan Uji T, yaitu :
·         Hipotesis Statistik adalah Ho : b = 0 dan Ha : b ≠ 0 (disebut uji dua arah)
·         Nilai T hitung adalah : b/Sb = 0,819657/0,05525673 = 14,833613932638 = 14,834
·         Nilai T tabel dengan df : 10 – 2 = 8 dan ½ α = 2,5% (uji dua arah) sebesar ± 2,306
·         Karena nilai T hitung lebih besar dari pada T tabel atau 14,834 > 2,306 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima (dapat dikatakan signifikan secara statistik).
·         Sedangkan untuk menguji secara serempak digunakan Uji F, yaitu diperoleh F hitung = 31.874,98 dan Untuk nilai F tabel dengan df : k - 1 ; n – k = 1 ; 8 dan α : 5% sebesar 5,32. Karena nilai F hitung lebih besar dari F tabel atau 31.874,98 > 5,32 maka Ho ditolak, Ha diterima dan hipotesis penelitian yang menyatakan bahwa Tinggi Badan berpengaruh terhadap Berat Badan Seseorang adalah dapat diterima.
Untuk nilai r (korelasi) adalah sebesar 0,982 dan koefisien determinasi (r kuadrat) sebesar 0,964. Berdasarkan hasil nilai koefisien korelasi maka dapat dikatakan bahwa hubungan antara variabel independen (Tinggi Badan) dengan variabel dependen (Berat Badan) mempunyai hubungan yang kuat karena nilai r sebesar 98,2% tersebut sangat mendekati nilai 100%.
Sedangkan berdasarkan nilai r kuadrat sebesar 96,4% menggambarkan bahwa sumbangan variabel independen (Tinggi Badan) terhadap naik turunnya variabel dependen (Berat Badan) sebesar 96,4% sedangkan sisanya merupakan sumbangan dari variabel lain yang tidak dimasukkan dalam model.
Kesimpulannya : Berdasarkan hasil pengujian hipotesis, baik Uji T maupun Uji F, diketahui bahwa Variabel Tinggi Badan Seserorang berpengaruh terhadap Variabel Berat Badan Seseorang dan pengaruhnya bersifat positif (nilai koefisien regresinya sebesar 0,819657), artinya jika seseorang mempunyai tinggi badan semakin tinggi maka akan meningkatkan berat badannya (dan sebaliknya). Berdasarkan nilai koefisien regresi tersebut dapat diketahui bahwa jika tinggi badan meningkat sebesar 10% maka berat badan akan meningkat 8,2%.
Sedangkan berdasarkan nilai koefisien korelasi dan koefisien determinasi diketahui bahwa variabel independen (Tinggi Badan) mempunyai hubungan yang kuat dan mempunyai sumbangan yang cukup besar terhadap variabel dependen (Berat Badan).


1 komentar: